RECOMMENDATION SYSTEMS AND PRIVACY

Stephane Henriot
ENS Cachan

Recommendation Systems

During the last few years, the volume of available data (on the Internet, for instance) has become
huge. Indeed, that makes it impossible for a user (no matter what is the domain) to read the
whole available content. That is the reason why, in many domains (for instance shopping, news or
multimedia content) recommendation systems (or recommenders) enable the user to find the content
he might be interested in.

Collaborative Filtering

The idea behind collaborative filtering recommendation systems is that we can dynamically use the
opinions of other users to help recommending content. Indeed, if the opinions of a subset of users
are very close for content they share, we can use their opinion on other items to predict opinions
and recommend items (assuming the opinions will also be close). However, that raises issues such as
complexity (scalability) and privacy (communicating opinions).

L

L.
=

e
= | §
- | T

s
?

~
2
=

- |4 | 0~

s v

"Collaborative filtering” by Moshanin - Own work. Licensed under Creative Commons
Attribution-Share Alike 3.0 via Wikimedia Commons

CryptRec

Most of the current recommendation systems seem to introduce privacy “Big Brother” issues, since
all the users’ information has to be given to one entity. Distributed systems tend to solve these
issues, however privacy concerns remain, since the information can still be retrieved by spying on the
network.

CryptRec is a collaborative filtering recommendation system currently being developped at the
EPFL, by Patra Rhicheek and others. The main idea is to use cryptography in order to compute
personalized recommendation and ensure confidentiality (reveal very little information about the
users). The idea for the users is to send encrypted data. However, a given user must be able to
decrypt only its own recommendation. Then, one could try to give each user a different key, but it
would be hard for the recommendation system to compute recommendation based on data encrypted
with different keys. That’s why a transformation ensures everything is encrypted with the same key.

f Computation on !
1 Encrypted Data !
!

f Encryption ! :
: + : - T - -—sss s -~
| Transformation (CM=> RSP) | A
st I Recommendation
Service Provider (RSP)

Client Machine (CM)

A\
' Transformation |
ki<~ (RSP=CM) :
.~ ,

Confidentiality Service
Provider (CSP)

CryptRec basic scheme

About this project

Improving CryptRec

CryptRec’s initial implementation has been done on a single server. Only one
client can use the system at a time and the security parameter is quite low. The
main challenge would be to make CryptRec a distributed system, in order to
improve the scalability (latency) and security.

I rewrote parts of the existing implementation in order to make it more generic
and distributed. A cluster such as Griddk can be used to host the system, each
node acting as a web server.

I‘ Computation on !
: Encrypted Data !
1

If Encryption
! * !
' Transformation (CM=> RSP) |

——————————————

Client Machine (CM)

Grid5k

Client node

7 ‘lllllb Recommendation

Service Provider (RSP)

Grid5k

Other nodes

——————————————

| Transformation :
=~ (RSP=>CM)

——————————————

Confidentiality Service
Provider (CSP)

— Grid5k - Master node

CryptRec Gridbdk distributed implementation

However, the system uses too much memory to run on most machines. One
can find a decomposition and use a MapReduce scheme as provided by Hadoop,
but each round of communication increases the recommendation latency. There

is a trade-off between memory, latency and security:.

HyRec

Hybrid recommenders such as HyRec try to provide correct recommendations
very quickly and through a very simple system. In hybrid systems, the server
and client share the information and computing cost. For instance in HyRec,
the server gives the client the last neighbors and neighbors of neighbors so that
the client itself can compute the K nearest neighbors (KNN) and its own recom-
mendation. The experimentation shows that thanks to that iterative process, the
KNN sets computed quickly converge to the global KNN sets. However, there are
several obstacles that can prevent HyRec to handle billions of items and users.
For instance, for each request, the server has to send the full profiles of O(K?)
users. The client then has to go over the whole profiles to find the popular items.
Computing the similarities also includes floating point operations that can be
costly. The challenge here is to improve the scalability while keeping a good
recommendation quality.

We come with a few ideas that could make the system faster. First of all,
the data can be updated with offline computations, from time to time. Then, a
relevant (smaller) set of items can be used to partition the users (most popular
or controversed items, for instance). A way to share the computing cost with the
user could be to partition the users in a tree maneer an then let the client find his
path. I implemented and tried this on the MovieLens 100k dataset. Each item
is mapped to the most similar item to improve the density (in the top x popular
items with respect to the cosine similarity) and the ratings are replaced with the
average for each popular item.

I |
"pop6 fin.out" +

1l WWWWWWHWHWW 1.06

0.6 s
0.4 =

0.2 - u

| | | | | |
0 30 100 150 200 250

The Mean Absolute Error of the new method (red curve) is close to the full
KNN method (value shown in green), even with low values of x.

This project has been conducted as an ARPE (abroad year) from November 2014 to July 2015 in Switzerland. It took place in the Distributed Programming Laboratory (LPD) from the
EPFL (Ecole Polytechnique Fédérale de Lausanne). I worked with Rhicheek Patra, under the supervision of Prof. Rachid Guerraoui, LPD director.

~oster

